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Abstract
The properties of materials near structural phase transitions are often
successfully described in the framework of Landau theory. While the focus
is usually on phase transitions, which are induced by temperature changes
approaching a critical temperature Tc, here we will discuss structural phase
transformations driven by high hydrostatic pressure, as they are of major
importance for understanding processes in the interior of the earth. Since at very
high pressures the deformations of a material are generally very large, one needs
to apply a fully nonlinear description taking physical as well as geometrical
nonlinearities (finite strains) into account. In particular it is necessary to retune
conventional Landau theory to describe such phase transitions. In Tröster et al
(2002 Phys. Rev. Lett. 88 55503) we constructed a Landau-type free energy
based on an order parameter part, an order parameter–(finite)strain coupling
and a nonlinear elastic term. This model provides an excellent and efficient
framework for the systematic study of phase transformations for a wide range
of materials up to ultrahigh pressures.

We illustrate the model with the specific example of BaCr(Si4O10),
showing that it fully accounts for the elastic softening which is observed near
the pressure induced phase transformation.

1. Introduction

A major achievement of Ekhard Salje and co-workers was to show that Landau theory can
be very efficiently applied to the description of experimental data near temperature induced
structural phase transitions in minerals (Salje 1990, 1992, Carpenter et al 1998). There are a
couple of reasons for this success. First of all, as coupling to strains induces long range forces
and enhances anisotropy, strain-induced interactions always tend to suppress fluctuations,
leading to a mean field type transition (Bratkovky et al 1995). Depending on the nature of the
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system (i.e. on the type of coupling between the strain and order parameter, its anisotropy and
the boundary conditions imposed on its surface) strain effects may also change the character of
the transition from second to first order (Bergman and Halperin 1976). In principle, a Landau
potential can be obtained from a low order Taylor expansion of the mean field free energy
(e.g. Parlinski et al 1989). The problem of how to determine the range of validity of this
expansion naturally arises. To answer this question one observes that in many mineral systems
the phase transitions turn out to be of the displacive type (Dove 1997). For such systems, the
above authors were able to show that Landau theory indeed allows us to reproduce experimental
data in an extremely broad temperature range, in particular down to very low temperatures, by
taking into account the effect of quantum saturation (Salje et al 1991). The situation is not so
simple for the other extreme, i.e. order–disorder phase transitions, since it is no longer possible
to approximate their free energy by a low order polynomial in the order parameter (Giddy et al
1989). In passing, we note that real systems are often of mixed, i.e. displacive/order–disorder
character (Meyer et al 2000, Sondergeld et al 2000), and the characterization of crossover
systems in between a displacive and order–disorder type is still a matter of active research
(Pérez-Mato et al 2000, Rubtsov et al 2000, Tröster et al 2005).

In ‘traditional’ Landau theory it is difficult to include pressure effects beyond the
infinitesimal strain approximation. Therefore one frequently resorts to replacing the elastic
background energy by its harmonic truncation and consequently treats the strains as
infinitesimal. Since the total strains appearing in temperature induced phase transitions are
as a rule quite small this is well justified. However, when we discuss the role of extremely high
pressure in driving the transition, the validity of this assumption must be seriously doubted.

At high pressure a phase transition is usually detected by anomalies, for example in the
system volume V (P), which in turn result from anomalies in the pressure dependence of the
lattice parameters ai(P), i = 1, 2, 3, near a critical pressure Pc. In many cases this leads to
an additional (with respect to the ‘background’) nonlinear P dependence of lattice parameters
and/or volume. As a function of pressure, the ‘stiffness’ of any solid is characterized by the
isothermal compressibility κ(P) = −d log V (P)/dP . Various theoretical concepts are usually
employed to derive so-called equations of state (EOS) (Anderson 1995, Angel 2000a, 2000b),
which—in the absence of phase transitions—describe the hydrostatic pressure dependence of
the crystal’s volume V (P).

In the presence of a high pressure phase transition (HPPT) a commonly adopted practice
is to merely fit the corresponding V (P) behaviour to a number of differently parametrized
EOS for each phase (Schulte and Holzapfel 1995, Krüger and Holzapfel 1992, Chesnut and
Vohra 2000), and, apart from computer simulations, in the case of a reconstructive phase
transition there is little more one can do at present. However, from a theoretical point of view,
although this purely phenomenological procedure does fit experimental volume data in many
cases, it neither describes the pressure behaviour of individual strain components nor provides
any possible further insight into the mechanisms of a HPPT. A more profound theoretical
approach is therefore of vital interest to a broad audience encompassing physicists studying
the high pressure behaviour of materials (crystals, liquid crystals, complex liquids, biological
membranes, etc) to geologists investigating the earth’s minerals and bulk properties.

Indeed, for HPPTs of the group–subgroup type, it is natural to expect that one could
do much better by applying the concepts of Landau theory. In particular, we should be
able to connect the high and low pressure phase by a uniform thermodynamic description.
However, here one faces a marked difference compared to the temperature driven case. At
high pressures, as the inter-atomic forces opposing further compression, a crystal’s volume
and lattice parameters develop large strains in a pronounced nonlinear way, which corrupts
any serious attempt to treat the elastic energy in the framework of the infinitesimal strain
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Figure 1. Sketch of deformation states and superposition of strains.

approximation. For these reasons it is necessary to reconsider the construction of Landau theory
at extremely high pressures and large deformations (Tröster et al 2002). Here we summarize
the main ideas of this new theoretical approach and discuss some consequences for the elastic
behaviour of materials.

2. New approach for high pressure phase transformations

As stated above, the conventional infinitesimal strain approach is clearly insufficient for
achieving an accurate description of HPPTs. Instead, at high pressures the elastic response
of a system must be characterized in terms of an appropriate nonlinear strain measure like
the Lagrangian or Eulerian strain tensor. Let X and X ′ denote an undeformed reference
system and a deformed system, respectively. Then, from the deformation gradient tensor
αik = ∂ X ′

i/∂ Xk one constructs the Lagrangian strain tensor eik = 1
2

(∑
n αniαnk − δik

)
. In

the present work, we consider three such pairs of coordinate systems, which serve as reference
systems for measuring the following strains (cf figure 1). For measuring the ‘background strain’
e(P), which is defined as the Lagrangian strain displayed by the system at the constraint of zero
order parameter Q̄ (see below), X(P) denotes the corresponding state and X(P = 0) is used
as a reference system. For measuring the spontaneous strain ε̂ resulting from the emergence of
Q̄ �= 0, X(P) plays the role of a (hypothetical) ‘floating’ background reference system. Above
the critical pressure Pc, the total strain η(P), which is obtained as the nonlinear superposition
η = e+α+ ·ε̂ ·α. of the spontaneous strain ε̂ appearing ‘on top of’ the background strain e(P),
is the strain measured in the fully deformed state Y (P), which is the one actually displayed by
the system, the system X(0) again playing the role of the reference system.

In the spirit of Landau’s theory of phase transitions the Landau free energy F(Q, ε) is built
from an order parameter part FQ(Q), an order parameter–strain coupling FQε(Q, ε; X(P))

and a purely elastic free energy term Fε (ε; X(P)) (Toledano and Toledano 1988). The order
parameter part FQ(Q) is usually written as a polynomial in the variables Q which is constructed
using the theory of invariants of irreducible representations of the space groups (Kovalev 1993).
The construction of the coupling term FQε(Q, ε; X(P)) is more tricky. In the present work3 we
assume a linear–quadratic coupling of the order parameter to the spontaneous strain, which, as
explained above, is measured with respect to the floating background reference system X(P).

3 The case of bilinear coupling between the order parameter and strain to describe proper ferroelastic HPPTs is treated
in Tröster and Schranz (2007).
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The corresponding coupling coefficients will be denoted by d I J
i j (X(P)). We thus consider the

free energy

F(Q, ε̂; X(P)) = V (P)�(Q; X(P)) + V (P)
∑

I J i j

d I J
i j (X(P))QI Q J ε̂i j + F0(ε̂; X(P)) (1)

where �(Q; X(P)) denotes the order parameter potential. The pure elastic free energy part
F0(ε̂; X(P)) of the Landau free energy was treated in great detail in (Koppensteiner et al
2006).

HPPTs are characterized by the fact that the total strain η is not small. However, for
phase transitions close to second order there is at least a nonzero pressure interval starting at Pc

where the spontaneous strain ε̂ induced by the nonzero equilibrium order parameter Q̄ can still
be treated as infinitesimal. In this approximation the pure elastic free energy part of the Landau
potential with respect to X(P) reads:

F0(ε̂; X(P)) ≈ V (P)

(

−P
∑

i

ε̂ii + 1
2

∑

i jkl

Ci jkl(X(P))ε̂i j ε̂kl

)

(2)

where Ci jkl(X(P)) are the crystal’s thermodynamic elastic constants at pressure P defined
by the hydrostatic Cauchy stress tensor τi j = −Pδi j . Inserting equation (2) into (1) and
minimizing with respect to ε̂i j yields:

∑

K L

d K L
i j (X(P))Q̄K Q̄L +

∑

kl

Ci jkl(X(P))ε̂kl (Q̄) ≡ 0. (3)

Solving equation (3) for ε̂i j(P) and inserting into the equilibrium equation for the order
parameter

0 ≡ ∂�(Q̄; X(P))

∂ Q̄K
+ 2

∑

L

d K L
i j (X(P))Q̄L ε̂i j(Q̄) (4)

one obtains the renormalized order parameter potential written with respect to the deformed
state X(P):

�R(Q; X(P)) := �(Q; X(P))

− 1

2

∑

I J K L

QI Q J QK QL

(
∑

i jkl

d I J
i j (X(P))C−1

i jkl (P)d K L
kl (X(P))

)

. (5)

In the spirit of Landau theory we now make the simple but crucial assumption that the
Landau and coupling coefficients of the potential depend on P only in a ‘geometrical’ way,
i.e. through volume ratios and geometrical transformation rules between the reference states
X(P) and X(0), such that the P dependence of the equilibrium order parameter is due to the
presence of the order parameter–strain coupling. Transforming equation (5) to the undeformed
reference state X(0), the equilibrium order parameter Q̄ can then be calculated as the minimum
of

�R(Q; X(0)) = �(Q; X(0)) +
∑

I J i j

d I J
i j (X(0))ei j (P)QI Q J

−
∑

I J K L
i jkl

d I J
i j (X(0))

Ti jkl(P)

2
d K L

kl (X(0))QI Q J QK QL (6)

where

Trost(X(P)) ≡ V (0)

V (P)

∑

i jkl

αirα joC−1
i jkl(X(P))αksαlt (7a)

d I J
mn(X(P)) ≡ V (0)

V (P)

∑

i j

αmi d
I J
i j (X(0))αn j (7b)
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and the total (Lagrange) strain ηi j turns out to be

ηi j = ei j −
∑

K L

Q̄K Q̄L

∑

kl

d K L
kl (X(0))Ti jkl(P). (8)

Applying the above procedure and employing the usual assumptions concerning the
temperature behaviour of the Landau parameters, one is able to calculate the pressure and
temperature dependences of thermodynamic quantities like specific heat, strains and elastic
constants, soft mode behaviour, etc near HPPTs. A concrete example of the above theory at
work will be given below. However, the above constructions obviously rely on knowledge
of the pressure dependence of the elastic constants Ci jkl(X(P)) ≡ Ci jkl(P) (or equivalently,
the Birch coefficients Bi jkl(P) = P(δi jδkl − δilδ jk − δikδ jl) + Ci jkl(P)) and the resulting
background strains ei j(P). Note that these quantities also appear in the renormalized free
energy density equation (6). To calculate it we proceed in the following way.

For crystal classes that develop no shear strains under hydrostatic pressure (cubic,
tetragonal, hexagonal, orthorhombic) the deformation tensor αi j (P) = αi (P)δi j is diagonal
and the axial compressibilities satisfy the equations

− 1

αi (P)

dαi (P)

dP
=

∑

k

Sik(P) =: κi (P) (i = 1, 2, 3) (9)

with the initial conditions αi (0) = 1, where Si j(P) := B−1
i j (P) denote the compliance tensor

elements and we switched to Voigt notation. Therefore the deformation tensor components
αi (P) as well as the finite strain tensor components εi j(P) or lattice parameters ai(P) can
be easily calculated by integrating equation (9), once the functions Sik(P), i, k = 1, 2, 3 are
known.

In our recent work (Tröster et al 2002) we proposed the expansion

Si j (P) = κ(P)

κ0

(

S0
i j +

∞∑

n=1

κn
i j Pn

)

(10)

where κ(P) is the bulk compressibility, κ0 = κ(P = 0) and S0
i j denotes the zero-pressure

compliance. The expansion coefficients κn
i j obey the sum rule

∑
i j κn

i j = 0 ∀n ∈ N.
Equation (10), which is exact at infinite n, yields an elegant parametrization of the pressure
dependence of the compliance tensor, since it essentially factorizes out the main nonlinearity
of the compliance through the bulk compressibility κ(P). The elastic anisotropy is taken into
account by expanding the remainder in powers of P , as we anticipate that the very nature of the
expansion allows it to be truncated at low orders with good accuracy. Indeed we have shown
in a very recent work (Koppensteiner et al 2006) that even a low order truncation of our ansatz
equation (10) excellently fits the experimental high pressure data of olivine, fluorite, garnet,
magnesium oxide and stishovite. In fact, for all these examples a truncation at order n = 1
turned out to be sufficient to produce accurate results, the only exception being magnesium
oxide, where the expansion equation (10) had to be taken to n = 2. This very encouraging
result implies that our new thermodynamic theory indeed allows for a dramatic reduction of the
number of fit parameters as compared to conventional nonlinear approaches. Table 1 shows the
number of relevant (nonshear) elastic constants of second, third and fourth order for various
point group symmetries. Our approach requires only q2 − 1 additional unknown parameters κ1

i j
(at order n = 1), whereas a fit of an expansion of the elastic energy including nonlinear elastic
constants up to fourth order introduces q3 + q4 additional fit parameters. For example, in the
case of cubic I symmetry, our new approach requires q2 − 1 = 1 fit parameters as compared
to the q2 + q3 = 7 unknown parameters of a conventional fourth order nonlinear theory. For
lower symmetry the advantages of our approach are even more obvious. For instance, in the

5
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Table 1. Number q2, q3, q4 of nonshear elastic constants of second, third and fourth order (Roy
and Dasgupta 1988, Brendel 1979).

Cubic I Hexagonal I Tetragonal I Tetragonal II Orthorhombic
(432, 4̄3m Cubic II (622, 6mm Hexagonal II (422, 4mm (4, 4̄ (222, mm2
m3m) (23, m3) 6̄m2, 6/mmm) (6, 6̄6/m) 4̄2m, 4/mmm) 4/m) mmm)

q2 2 2 4 4 4 4 6
q3 3 4 6 6 6 7 10
q4 4 5 13 13 9 9 15

case of orthorhombic symmetry our new parametrization needs five parameters, which should
be compared to a total of 25 unknowns for conventional nonlinear elasticity!

The combination of high pressure Landau theory and the use of the expansion (10) for
the background system X(P) is illustrated by an analysis of measurements of tetragonal
BaCr(Si4O10) single crystals. Using x-ray diffraction, the P dependence of lattice parameters
a1(P) = a2(P), a3(P), and the unit cell volumes V (P) were measured in great detail at room
temperature in a diamond anvil cell (Tröster et al 2002).

One finds a tetragonal–tetragonal HPPT at approximately 2.24 GPa, characterized by a
discontinuity in a1(P), a3(P) and V (P). Consistent with the observed pressure hysteresis
behaviour, the transition can be classified as being (weakly) of first order. The order parameter
part is constructed in the following standard way (Kovalev 1993): the symmetry reduction
P4/ncc to P4212 is driven by the one-dimensional irreducible representation τ2 at the
wavevector k = 0, yielding a one-component order parameter Q, which is zero in the paraphase
(P < Pc) and nonzero in the distorted phase (P > Pc). For �(Q,X) we assume

�(Q,X) = A

2
Q2 + B

4
Q4 + C

6
Q6 (11)

where A, C > 0. The tetragonal symmetry also dictates d1(X) = d2(X) �= d3(X).
Let K0 := κ−1(0) denote the isothermal bulk modulus at P = 0. The Murnaghan equation

of state (MEOS) (Anderson 1995)

v(P) := V (P)

V (0)
= (

1 + K ′
0 P/K0

)−1/K ′
0 (12)

which is based on the simple ansatz κ−1(P) =: K (P) = K0 + K ′
0 P , is frequently used to

describe (P, V ) data and is known to usually reproduce the values of K (P) correctly up to
volume changes somewhat larger than v(P) > 0.9 while being algebraically much simpler
than other approaches such as the ‘Vinet’ or the ‘Birch–Murnaghan’ EOS (Anderson 1995,
Angel 2000b) used for higher compression ranges. Figure 2 shows corresponding fits of unit
cell volume and axes of BaCr(Si4O10) using the parameter values of table 2. Note, however,
that our theory can in principle be used in combination with any of these EOS, or even a
function V (P) derived from an experimental measurement or a computer simulation. With
these values our model confines possible pressure ranges for hysteresis effects to 2.2–2.4 GPa.
One also calculates that the geometrical error introduced in assuming the spontaneous strain ε̂

to be infinitesimal is smaller than 0.9%, yielding an error <0.1% in the total strain η.
Figure 3 shows the pressure dependence of the bulk modulus of BaCr(Si4O10) calculated

from the experimental data of V (P) compared to the predictions of the different approaches
discussed above. It is clearly evident that the conventional fitting procedure, which is based on
a piecewise fitting of EOS in the high and low pressure phase, respectively, underestimates the
elastic anomaly by at least a factor of two, whereas the present high pressure adapted Landau
theory reproduces the elastic anomaly very well. The same behaviour is found for the axial

6
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Figure 2. Pressure dependence of lattice parameters and unit cell volume of BaCr(Si4O10). Points
are measured data, lines are fits using the present theory.

Table 2. Fit parameters for the high pressure Landau theory of BaCr(Si4O10).

BaCr(Si4O10)

A 0.45 GPa

B −0.2 GPa

C 20 GPa

a1(0) = a2(0) 7.535 Å

a3(0) 16.09 Å

κ0
1 0.0035 GPa−1

κ0
3 0.001 GPa−1

S0
11 0.0035 GPa−1

S0
3 0.0089 GPa−1

K ′
0 4.1

κ1
11 1.9 × 10−4 GPa−2

κ1
12 −1.7 × 10−4 GPa−2

κ1
13 2.3 × 10−4 GPa−2

d1 13.75 GPa−1

d3 −0.33 GPa−1

incompressibilities (figure 4). It is worth noting that a very similar softening was also observed
in other examples of pressure-induced phase transitions, notably for the bulk modulus of solid
C60 near its fcc–sc transition (Pintschovius et al 1999) and for the longitudinal acoustic modes
near the cubic–tetragonal transition of BaTiO3 (Ishidate and Sasaki 1989).

3. Summary

Summarizing, our theory allows to compute a wealth of experimental observables (e.g.
lattice parameters, elastic constants, specific heat, soft modes, etc) from a quite transparent

7
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Figure 3. Pressure dependence of the bulk modulus K (P) calculated from the experimental data
of V (P) (points). The lines show calculations based on piecewise EOS fitting (thin line) and the
present high pressure Landau theory (thick line).

0 2 4 6 8 10

0

100

200

300

Pc

high 
symmetry low symmetry

BaCrSi4O10

K

Kc

Ka

el
as

tic
 m

od
ul

i (
G

P
a)

Pressure (GPa)
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parameters a1, a3 (points) and the bulk modulus K compared with the results of the present Landau
theory (lines).

thermodynamic model based on coupling finite strain elasticity to Landau theory. There are
several advantages of this new approach to HPPTs. First there is a drastic reduction of fit
parameters as compared to an expansion in terms of nonlinear elastic constants (table 1).
Moreover the present approach allows for a direct connection to EOS fitting procedures.
Compared to the method of piecewise EOS fitting the main advantage of our method is that
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it allows for a unified consistent description of high and low symmetry phases with a single set
of parameters.

Of course there are a few assumptions made in the derivation of our theory, which may
impose some limitations on its applicability to real cases. These assumptions are summarized
as follows:

• The Landau theory is currently derived for HPPTs of the group–subgroup type, so-called
‘Landau-type’ phase transitions. However, we plan to extend our theory to also include
the important class of reconstructive phase transitions following the theoretical approach
of Toledano and Dmitriev (1996).

• The spontaneous strain ε̂i j occurring at the HPPT is assumed to be infinitesimal. This
assumption is obviously justified for a second or close-to-second order transition in the
vicinity of the critical pressure but has to be checked against experimental data for any
given material in other cases. However, we emphasize that the ‘background’ strains ei j(P)

as well as the total strains ηi j (P) are treated as fully finite strains, since these are usually
large at HPPTs.

• For the derivation of the pure elastic part of the free energy, as well as for the calculation
of the ‘background’ strains, the longitudinal part of the compliance tensor (inverse
Birch coefficients) is expanded as a function of pressure in a very efficient way (see
equation (10)). In Koppensteiner et al (2006) we have shown that this parametrization
works very well up to very high pressures for olivine, fluorite, garnet, magnesium oxide
and stishovite, i.e. the P expansion can be truncated at very low order without loss of
precision. Nevertheless, for any given material under investigation it has to be checked at
which order the P expansion can be truncated.

• In applying the present theory to a concrete HPPT, the order parameter part of the
Landau potential is—as always in Landau theory—expanded into a polynomial in the
order parameter components, whose coefficients together with the coupling coefficients
(or order parameter–strain coupling) are treated as fit parameters. Our approach relies
on the assumption of pressure independence of the ‘pure’ Landau potential and coupling
coefficients, up to the volume changes captured in the overall factor V (P)/V (0). This is
an obvious thing to do, and is justified in the spirit of temperature-driven Landau theory
(Tröster et al 2005), namely that it does represent a good approximation near the critical
pressure Pc. In a broader pressure range away from Pc the Landau-coefficients may
nevertheless become slightly pressure dependent. However, any such ‘nontrivial’ pressure
dependence actually signals additional nonzero couplings between the order parameter and
strain beyond the linear–quadratic term considered, a fact which is also well-known from
the infinitesimal version of the theory.

• Our theory is capable of dealing with ‘Landau-type’ high pressure phase transitions
between arbitrary group–subgroup related symmetries. However, in applications to
experimental situations, at present our parametrization of the pressure dependence of the
compliance tensor of the background system, which is needed to define the ‘base lines’ for
determining the spontaneous strains, works only for longitudinal components. It is only
due to this limitation that applications of the theory are at present practically restricted
to HPPTs involving cubic, tetragonal, orthorhombic or hexagonal structures, i.e. crystal
classes where no shear components of strain are induced by hydrostatic pressure. However,
it is possible to treat more general cases as soon as the pressure dependence of the shear
components of the compliance tensor is known in addition to the longitudinal ones. Further
work in this direction is in progress.

9
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Tröster A and Schranz W 2007 Ferroelectrics invited paper in honor of V. Ginzburg’s 90th birthday to appear
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